Papers

    Published (by subject)


    1. Flows on surfaces

  1. Structure des feuilles sur les surfaces non compactes. (French) [The structure of leaves on noncompact surfaces].
    H. Marzougui.
    Complex structures and Vector fields, (Pravetz, 1994) World Sci. Publishing, (1995), 24–35.

  2. Structure des feuilles sur les surfaces ouvertes. (French) [The structure of leaves on open surfaces].
    H. Marzougui.
    C. R. Acad. Sci. Paris., (Sér. 1), 323 (1996), 185–188.

  3. Structure of Foliations on 2-manifolds.
    H. Marzougui.
    Illinois Journal of Math., 42 (1998), 398–405.

  4. Flows with infinite singularities on closed two-manifolds.
    H. Marzougui.
    Journal of Dynam. and Control Syst., 6 (2000), 461–476.

  5. On Morse conjecture for flows on closed surfaces.
    H. Marzougui.
    Math. Nachr., 241 (2002), 121–124.

  6. Area preserving flows with a dense orbit.
    H. Marzougui.
    Nonlinearity, 15 (2002), 1379–1384.

  7. Some remarks concerning the topological characterization of limit sets for surface flows. .
    H. Marzougui.
    Canad. Math. Bull., 54 (2011), 311--315.

  8. Area preserving analytic flows with dense orbits.
    G.S. López, H. Marzougui.
    Topology Appl., 156 (2009), 3011–3015.

  9. On a Morse conjecture for analytic flows on compact surfaces.
    G.S. López, H. Marzougui.
    J. Differential Equations, 247 (2009), 2681–2687.

  10. Limit sets and global dynamic for 2-D divergence-free vector fields.
    H. Marzougui.
    Adv. Pure. Appl. Math., 13 (2022), 1–8.


  11. 2. Foliations

  12. Structure of foliations of codimension greater than one.
    H. Marzougui, E. Salhi.
    Comment. Math. Helv., 78 (2003), 722-730.


  13. 3. Affine interval exchange transformations

  14. Échanges d'intervalles affines conjugués à des linéaires. (French) [Conjugation between affine and linear interval exchanges].
    I. Liousse, H. Marzougui.
    Ergodic Theory Dynam. Systems, 22 (2002), 535–554.


  15. 4. Circle diffeomorphisms with break points

  16. On piecewise class P Cr homeomorphisms of the circle which are piecewise Cr (r ≥ 1) conjugate to irrational.
    A. Adouani, H. Marzougui.
    Ann. Inst. Fourier, 58 (2008), 755–775.

  17. On piecewise smoothness of conjugacy of class P circle homeomorphisms to diffeomorphisms and rotations.
    A. Adouani, H. Marzougui.
    Dyn. Syst., 27 (2012), 169–186.

  18. Computation of rotation numbers for a class of PL-circle homeomorphisms.
    A. Adouani, H. Marzougui.
    Discrete Contin. Dyn. Syst., 32 (2012), 3399–3419.

  19. Exotic circles in groups of piecewise smooth circle homeomorphisms.
    A. Adouani, H. Marzougui.
    Discrete groups and geometric structures, Contemp. Math., 501, Amer. Math. Soc., Providence, RI, (2009), 123–132.

  20. A sharp smoothness of the conjugation of Class P-homeomorphisms to diffeomorphisms.
    A. Adouani, H. Marzougui.
    Kodai Math. J., 39 (2016), 425-438.

  21. Singular measures for class P circle homeomorphisms with several break points.
    A. Adouani, H. Marzougui.
    Ergodic Theory Dynam. Systems, 34 (2014), 423-456.

  22. Nonrigidity for circle homeomorphisms with several break points.
    A. Adouani, H. Marzougui.
    Ergodic Theory Dynam. Systems, 39 (2019), 2305-2331.

  23. Reversibility in groups of piecewise linear homeomorphisms of the circle.
    K. Ben Rejeb, H. Marzougui.
    Bull. Malays. Math. Sci. Soc., 42 (2019), 2859–2877. ; corrigendum ibid. 46 (2023) 2p.

  24. A note on Hausdorff dimension of invariant measures of circle diffeomorphisms with breaks.
    H. Marzougui.
    Dyn. Syst., 40 (2025), 447–454.

    5. Linear dynamics

  25. Dynamic of Abelian subgroups of GL(n, ℂ): a structure Theorem.
    A. Ayadi, H. Marzougui.
    Geometria Dedicata, 116 (2005), 111–127.

  26. Dense Orbits for Abelian Subgroups of GL(n, ℂ).
    A. Ayadi, H. Marzougui.
    Foliations 2005, World Sci. Publ., Hackensack, NJ, (2006), 47–69.

  27. Hypercyclic abelian subgroup of GL(n, ℝ).
    A. Ayadi, H. Marzougui and E. Salhi.
    J. Difference Equations Appl., 18 (2012), 721–738.

  28. Abelian semigroups of matrices on ℂn and hypercyclicity.
    A. Ayadi, H. Marzougui.
    Proc. Edinb. Math. Soc., (2), 57 (2014), 323–338.

  29. Hypercyclic abelian semigroups of matrices on ℝn.
    A. Ayadi, H. Marzougui.
    Topology Appl., 210 (2016), 29–45; corrigendum ibid. 287 (2021), 107330.

  30. On multi-hypercyclic abelian semigroups of matrices on ℝn.
    A. Ayadi, H. Marzougui.
    J. Operator Theory, 71 (2014), 479–490.

  31. J-class abelian semigroups of matrices on ℂn and hypercyclicity.
    A. Ayadi, H. Marzougui.
    Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., RACSAM, 108 (2014), 557–566.

  32. Supercyclic abelian semigroups of matrices on ℂn.
    H. Marzougui.
    Monatsh. Math., 175 (2014), 401–410.

  33. J-class abelian semigroups of matrices on ℝn.
    H. Marzougui.
    Appl. Math. Nonlinear Sciences, 2 (2017), 519-528.

  34. On supercyclicity for abelian semigroups of matrices on ℝn.
    S. Herzi, H. Marzougui.
    Oper. Matrices, 12 (2018), 855–865. ; corrigendum ibid. 15 (2021), 777–781.

  35. Subspace-hypercyclic abelian linear semigroups.
    S. Herzi, H. Marzougui.
    J. Math. Anal. Appl., 487 (2020) 123960.

  36. Subspace-hypercyclic abelian semigroups of matrices on ℝn.
    S. Herzi, H. Marzougui.
    Results Math., 76 (2021), Article number: 185.

  37. Subspace-supercyclic abelian linear semigroups.
    S. Herzi, H. Marzougui.
    Indian Journal of Pure and Applied Math., 55 (2024), 1107–1128.

  38. Minimality and non-existence of non-zero finite orbits for abelian linear semigroups.
    A. Ayadi, H. Marzougui.
    Proc. Indian Acad. Sci., Math. Sci., 134 (2024), Paper No. 7.

  39. Dense and subspace dense subsets in finite dimensional spaces.
    S. Herzi, H. Marzougui.
    Poincare J. Anal. Appl., 12 (2025), 183-189.


  40. 6. Dynamics on one-dimensional continua

  41. Recurrence and almost periodicity on dendrites.
    H. Abdelli, H. Marzougui.
    Chaos Solitons Fractals, 87 (2016), 17–18.

  42. Invariant sets for monotone local dendrite maps.
    H. Abdelli, H. Marzougui.
    Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650150.

  43. On totally periodic ω-limit sets.
    H. Marzougui, I. Naghmouchi.
    Houston J. Math., 43 (2017), 1291-1303.

  44. Nonwandering points of monotone local dendrite maps revisited.
    H. Abdelli, H. Abouda, H. Marzougui.
    Topology Appl., 250 (2018), 61–73.

  45. Möbius disjointness conjecture for local dendrite maps.
    H. el Abdalaoui, G. Askri, H. Marzougui.
    Nonlinearity, 32 (2019), 285-300.

  46. Minimal sets for group actions on dendrites.
    H. Marzougui, I. Naghmouchi.
    Proc. Amer. Math. Soc., 144 (2016), 4413-4425.

  47. Minimal sets and orbit space for group actions on local dendrites.
    H. Marzougui, I. Naghmouchi.
    Math. Z., 293 (2019), 1057–1070.

  48. On Limit sets of monotone maps on regular curves.
    A. Daghar, H. Marzougui.
    Qual. Theory Dyn. Syst., 20 (2021), Paper No. 89.

  49. Dynamics of monotone maps on regular curves.
    A. Daghar, H. Marzougui.
    Topology Appl., 324, (2023), Paper No. 108352.

  50. Recurrence and nonwandering sets of local dendrite maps.
    H. Abdelli, H. Marzougui and A. Mchaalia.
    J. Difference Equations Appl., (2023), 29, No. 9-12, 1323-1340. ; corrigendum ibid. 29 (2023), i-ii.

  51. Nonwandering sets and special α-limit sets of monotone maps on regular curves.
    A. Daghar, H. Marzougui.
    Advances in Discrete Dynamical Systems, Difference Equations and Applications,
    Springer Proc. Math. Stat. Springer, 416,
    (2023), 339–362.

  52. Submitted for publication

  53. Hypercyclic scalar sets for abelian semigroups of matrices on ℂn and ℝn.
    S. Herzi, H. Marzougui.
    Submitted, (2024).

  54. Editor of special volumes of journals

  55. Proceeding of second Maghrebian Colloquium “Geometry-Dynamical Systems - Topology”, Bizerte, May 8-11, 2006, (H. Marzougui ed.,)
    Revue of Faculty of Science of Bizerte, Vol. V, 2006.

  56. Special chapters in books

  57. Problems from Bizerte-Sfax-Tunis Seminar, (with O. Echi and E. Salhi)
    In “Open Problem in Topology II” Pearl ed., Elsevier, 2007.

  58. Online courses

  59. Differential Calculus LFM3 (French).
    Virtual university of Tunis (last version: June 2023).